
 
  

BUILD YOUR OWN HIGH PERFORMANCE 
CLUSTER (WITH CUDA 10.0) STEP BY STEP 

A Study Note by ACTION lab, Depts of CEE at Mississippi State University 

Dr.Pengfei(Taylor) Li     Peirong(Slade) Wang 

Last updated in Nov 7th | 2018 



Platform: Ubuntu 18.04 
openmpi version 3.1.3 
In our example we use 192.168.2.1 and 192.168.2.2 as main node and computing node Ip 
address. 
Lines in Red Color is what you need to type in Machine#1(Main_Node) 
Lines in Green Color is what you need to type in Machine#2(Slave_Node) 
Lines in Orange Color is what you need to type in both machines. 

 
1. Setting up NFS (Network File System) server on Machine#1(Main_Node) 

On Ubuntu-mainnode we`ll set the machine as the NFS server. We will need to install a couple 
of NFS libraries. 

(http://quidsup.net/tutorials/?p=nfs) 
 
(install NFS server) 
sudo apt-get install nfs-kernel-server  
 
(Create Folder List to Share) 
sudo mkdir /nfsshare (for example) 
 
(edit export file to give location and files to share) 
sudo nano /etc/exports 
 
type in   
/nfsshare 192.168.2.2 (rw,sync,no_root_squash,no_subtree_check) 
 

(folder you want to share)                   (ip address you want to share to) 
exportfs –a     (load the/etc/exports new changes) 

 

(start nfs server) 
sudo service nfs-kernel-server start  

 

2. Setting up NFS Client: Machine #2(slave_node) 
       
      1. install nfs service and libraries 

 
sudo apt-get install nfs-common (install nfs client) 

             2. make a folder where the shared folder from Machine #1 will be mounted on Machine 
#2. 
              sudo mkdir /nfsshare 
             3. make sure that we can access Ubuntu-mainnode(Machine #1), the NFS Server. Make 
sure that the following two commands do not return any errors. 

http://quidsup.net/tutorials/?p=nfs)


             showmount -e 192.168.2.1 
             rpcinfo -p 192.168.2.1 
             mount 192.168.2.1:/nfsshare  /nfsshare 
            df -h 
With df -h, we should see that 10.0.1.2:/nfs mount has been created at the bottom. If we create 
any file inside /nfs, then all the machines connected can see the same file. 
              
Now, we test that the shared folder actually works. 
cd /nfsshare 
sudo nano 123 (create a txt file name 123) 
On machine #1 (mainnode), if we cd /nfsshare, we will see 123.txt is inside the folder. 
 
3.Making NFS more automatic 
 

When you restart the two virtual machines, the NFS shared folder will not be there. We need to 
set a more automatic way for the NFS client to look for the NFS folder. 

On the slave_node, we change a file called /etc/fstab. 

sudo nano /etc/fstab 

We add the following line: 
 
192.168.2.1:/nfsshare /nfsshare  nfs auto,noatime,nolock,bg,nfsvers=3,intr,tcp,actimeo=1800 0 0 
 
Every time, we restart the client, we can re-mount the NFS shared folder by typing mount -a. 
 
mount -a 
2. Setting up SSH Keys 
 
Install ssh on both machines 
sudo apt-get install ssh 
generate ssh keys 
ssh-keygen  -t rsa  -b 4096  -C your_email@example.com 
You can press Enter to leave the next three prompts as default. 

Enter file in which to save the key (/Users/you/.ssh/id_rsa): [Press enter] 
Enter passphrase (empty for no passphrase): [Type a passphrase] 
Enter same passphrase again: [Type passphrase again] 

Your identification has been saved in /Users/you/.ssh/id_rsa. 

Your public key has been saved in /Users/you/.ssh/id_rsa.pub. 



The key fingerprint is: 

01:0f:f4:3b:ca:85:d6:17:a1:7d:f0:68:9d:f0:a2:db your_email@example.com 

Open the ssh folder 
cd ~/.ssh 
copy the public key, id_rsa.pub, to authorized_keys to enable this key for access to machine #1 
cp  id_rsa.pub authorized_keys 
 
Now, we should send the private key, id_rsa, and public key, id_rsa.pub, from machine #1 to machine 
#2. We use a command called scp for copying files over machines. 
 
cd ~/.ssh 
 
scp id_rsa id_rsa.pub username@192.168.2.2: 
 
On machine #2, we have received the private key and public key.  
 
Now, we copy the id_rsa and id_rsa.pub to the ~/.ssh folder. 

 
sudo cp id_rsa id_rsa.pub  ~/.ssh 
 
We want to copy id_rsa.pub to the authorized_keys to allow machine #1 to be able to SSH 
to machine #2 without a password.(on machine #2) 
 
cd ~/.ssh 
cp id_rsa.pub authorized_keys 
 
We should be able to ssh from machine #1 to machine #2 without a password and vice 
versa. 
On machine #1: ssh username@192.168.2.2 
On machine #2: ssh username@192.168.2.1 
 
3. Installing CUDA 10.0 (If GPU Computing is needed in Openmpi, if not you can skip 
this part) 
 
1. Download CUDA 10.0 
go to (https://developer.nvidia.com/cuda-downloads)   

https://developer.nvidia.com/cuda-downloads)


 
3. Move download CUDA file to /nfsshare folder 

 

go to the folder you download CUDA and move CUDA installation file to share folder 
sudo mv cuda-repo-ubuntu1804-10-0-local-10.0.130-410.48_1.0-1_amd64.deb /nfsshare 
(Before install CUDA to /nfsshare folder change /nfsshare previllige from root to username) 
 
sudo chown –R username /nfsshare 

install CUDA 10.0 on both machines (one by one) 
 
sudo dpkg -i cuda-repo-ubuntu1804-10-0-local-10.0.130-410.48_1.0-1_amd64.deb 
sudo apt-key add /var/cuda-repo-<version>/7fa2af80.pub 
sudo apt-get update 
sudo apt-get install cuda 
 
edit ~/.bashrc file  (add following two line at the bottom of the bashrc file) 
 
nano ~/.bashrc 
export PATH=/usr/local/cuda-10.0/bin:$PATH 
export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64:$LD_LIBRARY_PATH 
 
reload bashrc file 
 
source ~/.bashrc 
 
Reboot both machines 
After reboot check if Cuda compiler is successfully installed 
nvcc --version 
Which will give the results of your CUDA toolkit version and built date. 



 
next we will test a sample included in CUDA 10.0 build 
go to usr/local/cuda-10.0 
copy sample folder to nfsshare 
go to 1_Utilities/deviceQuery  
right click open terminal here 
make 
after make  
run the sample which will give details of your NIVIDIA GRAPHIC CARD  
./deviceQuery 

 
 
4. Installing  Openmpi-3.1.1 

 
Download openmpi-3.1.1.tar.gz to nfsshare folder 
 



(https://www.open-mpi.org/software/ompi/v3.1/) 
 
extract the openmpi-3.1.3.tar.gz folder 
tar -xvf openmpi-3.1.3.tar.gz 
 
We will make a directory where all the compiled binaries and libraries of openmpi will go. 
mkdir /nfsshare/openmpi 
 
configure the settings of openmpi for installation.  
cd /nfsshare/openmpi-3.1.3 
./configure --prefix=/nfsshare/openmpi --with-cuda (if you follow step 3 installed CUDA)  
./configure --prefix=/nfsshare/openmpi (If you did not install CUDA) 
 
Install openmpi-3.1.3 
After configure 
make 
After make 
make install 
 
If we cd /nfsshare/openmpi, we will see folders containing the binaries and libraries of openmpi. If we 
cd /nfsshare/openmpi/bin, we can see openmpi binaries like mpicc and mpirun. 

 

Currently, we won’t be able to use mpicc from anywhere on the machine. We need to change the 
~/.bashrc file on machine #1 and machine #2 to globalize the mpi commands. 

On both machines: 

vi ~/.bashrc 

At the bottom of ~/.bashrc, add the following two lines: 

export PATH=/nfsshare/openmpi/bin:$PATH 

export LD_LIBRARY_PATH="/nfsshare/openmpi/lib:$LD_LIBRARY_PATH" 



 

PATH is used for bin folders, and LD_LIBRARY_PATH is used for lib folders. To reload the 
~/.bashrc, type the following command on both machines: 

source ~/.bashrc 
 
5. Using MPI binaries: Running MPI 
 
Go to the nfsshare folder 
cd /nfsshare 
create a folder for projects 
mkdir /projects 
create a host file contains IP address for all the IP`s that we want MPI run 
nano hosts   
(for example  our machine Mainnode has 6 cores and Slave nodes has 40 cores) 
add following two line into hosts file you just created 

192.168.2.1 slots=40  

192.168.2.2 slots=6  

test your openmpi; 
mpirun --prefix /nfsshare/openmpi -machinefile hosts -n 25 hostname 
(which will give you the name of the cores mpi is currently using, from picture below you can 
clearly see five cores of twenty-five are come from 208computing which is the system name of 
our slave) 

 
 
 



6.Install Codeblocks and anaconda 
 
in Ubuntu codeblocks can be directly download and installed in software market 
 

 
 

 
 
Download anaconda with python 3.7 Version 64-Bit(x86) installer  
 

 
 
run anaconda script  
 
(https://www.digitalocean.com/community/tutorials/how-to-install-anaconda-on-ubuntu-18-04-quickstart) 
 
bash Anaconda3-5.3.0-Linux-x86_64.sh 
source ~/.bashrc 
 
start anaconda  



 
anaconda-navigator 
 
 

7. Appendix 
 
videos:  
      1.How to set up hpc clusters on CentOS? 
https://www.youtube.com/watch?v=WgUjghaI_Ls&index=1&list=PLPx62H67wgD47MWNeAkvWjZURgpl
6mBtu 
https://www.youtube.com/watch?v=3MZcRBOsNWE&index=6&list=PLPx62H67wgD47MWNeAkvWjZUR
gpl6mBtu&t=1228s 
       2.How to Install Anaconda Python, Jupyter Notebook, Spyder on Ubuntu 18.04 Linux 
         
https://www.youtube.com/watch?v=DY0DB_NwEu0 
      

         3. CUDA 9.0 installation in Ubuntu 16.4 + / Linux Mint - Full instruction with verification 
 

https://www.youtube.com/watch?v=FK1y7XQuhp0&index=8&list=PLPx62H67wgD47MWNeAkvWjZURgpl6m
Btu 

 
websites: 
 

1. How to configure openmpi with CUDA 
https://www.open-mpi.org/faq/?category=buildcuda 
 

2. How to install anaconda on Ubuntu 

https://www.digitalocean.com/community/tutorials/how-to-install-anaconda-on-ubuntu-18-
04-quickstart 

 
3. OPENMPI FAQ 

https://www.open-mpi.org/faq/ 
 
 
 
 

 
 
 

 

https://www.youtube.com/watch?v=WgUjghaI_Ls&index=1&list=PLPx62H67wgD47MWNeAkvWjZURgpl6mBtu
https://www.youtube.com/watch?v=WgUjghaI_Ls&index=1&list=PLPx62H67wgD47MWNeAkvWjZURgpl6mBtu
https://www.youtube.com/watch?v=3MZcRBOsNWE&index=6&list=PLPx62H67wgD47MWNeAkvWjZURgpl6mBtu&t=1228s
https://www.youtube.com/watch?v=3MZcRBOsNWE&index=6&list=PLPx62H67wgD47MWNeAkvWjZURgpl6mBtu&t=1228s
https://www.open-mpi.org/faq/?category=buildcuda
https://www.open-mpi.org/faq/

	2. Setting up NFS Client: Machine #2(slave_node)
	1. install nfs service and libraries
	We add the following line:
	192.168.2.1:/nfsshare /nfsshare  nfs auto,noatime,nolock,bg,nfsvers=3,intr,tcp,actimeo=1800 0 0
	Every time, we restart the client, we can re-mount the NFS shared folder by typing mount -a.
	2. Setting up SSH Keys
	cp  id_rsa.pub authorized_keys
	Now, we should send the private key, id_rsa, and public key, id_rsa.pub, from machine #1 to machine #2. We use a command called scp for copying files over machines.
	cd ~/.ssh
	scp id_rsa id_rsa.pub username@192.168.2.2:
	On machine #2, we have received the private key and public key.
	Now, we copy the id_rsa and id_rsa.pub to the ~/.ssh folder.
	3. Installing CUDA 10.0 (If GPU Computing is needed in Openmpi, if not you can skip this part)
	4. Installing  Openmpi-3.1.1
	Download openmpi-3.1.1.tar.gz to nfsshare folder
	(https://www.open-mpi.org/software/ompi/v3.1/)
	5. Using MPI binaries: Running MPI
	2.How to Install Anaconda Python, Jupyter Notebook, Spyder on Ubuntu 18.04 Linux
	https://www.youtube.com/watch?v=DY0DB_NwEu0
	3. CUDA 9.0 installation in Ubuntu 16.4 + / Linux Mint - Full instruction with verification

